Ontological Spring Naumburg, Germany - April 17-20, 2002

What needs to be represented in a biomedical ontology?

Olivier Bodenreider
National Library of Medicine
Bethesda, Maryland - USA

Anita Burgun
Medical School / Univ. Hospital
Rennes, France

Outline

- Granularity issues
- ◆ Types vs. instances
- Ontology vs. information model

Granularity issues

Granularity

- ◆ No theoretical limit
- ◆ No ideal granularity
- Arbitrary limitation
 - Number of digits in code
 - By design (purpose driven)
- **♦** Increased
 - When several perspectives are combined (UMLS / individual vocabularies)
 - When "hierarchy" is loosely defined

Granularity in UMLS

Distribution of depth max for 10,000 randomly selected UMLS concepts (2001) 5

Example Addison's disease

- Representation in several medical vocabularies
 - SNOMED International
 - Medical Subject Headings (MeSH)
 - Alcohol and Other Drugs Thesaurus
 - Read Codes (CTV3)
 - International Classification of Diseases
- Combined representation in the UMLS Metathesaurus

SNOMED International

MeSH

Read Codes

organize concepts

Endocrine Diseases

SNOMED

MeSH

AOD

Read Codes

organize concepts

SNOMED MeSH AOD Read Codes

UMLS

Granularity and synonymy

- Granularity may be limited in order to represent only significant differences among concepts (linguistic synonymy vs. clinical synonymy)
- When granularity is limited by design, it may not be possible to represent some hierarchical relationships

Example: Acute infantile eczema in SNOMED

Lack of structure within a source

Granularity and redundancy

- "Core" concepts
 - Present in more than one vocabulary
 - Essentially eliminates leaf nodes (structural equivalent)
 - Also reduces the density of the graph
 - Reduces the number of concepts dramatically (> 80%)

Types vs. Instances

Types and instances Examples

- Types
 - Liver is a kind of Organ
 - Cirrhotic liver is a kind of Liver
- **♦** Instances
 - Leipzig is an instance of City
 - Barry Smith *is an instance* of Philosopher
 - My liver is an instance of Liver
 - This aspirin tablet *is an instance* of Clinical drug

Nothing can be a kind of

- LeipzigMy liver
- Barry Smith This aspirin tablet

Types and instances Biomedical domain

- **♦** Types
 - Terminologies
 - Ontologies
- **♦** Instances
 - Medical records
 - Patient databases

used to abstract away from or reason about

- ◆ Classes
 - Taxonomy
 - Classification

Class: Schizomycetes

Order: Eubacteriales

Family: Bacillaceae

Genus: Clostridium

Species: Clostridium botulimun

Types and instances UMLS

- ◆ Two-level structure
 - Semantic Network
 - 134 Semantic Types (STs)
 - Relationships among STs
 - Metathesaurus
 - 800,000 concepts
 - Inter-concept relationships
 - Link = categorization
 - Often isa
 - Rarely is an instance of

Types and instances UMLS

- Essentially all types
 - Semantic types
 - Concepts
- Exceptions
 - Named geographic areas Germany, Europe
 - Named laws
 National Health Planning and Resources Development Act of 1974
 - Named intellectual products
 Finnish translation of the Medical Subject Headings
- ◆ No explicit distinction between *is a kind of* and *is an instance of*

Types and instances Identification

♦ Features of instances

[E. Alfonseca, GWA 2002]

- Structural: often leaf nodes
- Morphologic: often capitalized
- Syntactic: usually not preceded by a determiner
- Applications
 - Named entity recognition

Types, instances and granularity

Types and instances Summary

- Biomedical ontology
 - Essentially types
 - Some classes (taxonomy)
 - Hardly any instances
- ◆ Instanciation: medical records
- Relationships: must distinguish between
 - Is an kind of (type-type)
 - Is an instance of (instance-class, type-class)

Ontology vs. Information model

Aspirin revisited

Other examples Medical procedures

- Medical procedure
 - Action
 - Anatomic site
 - Instruments
 - Approach

- Appendicectomy
 - Remove
 - Appendix
 - Surgical instruments
 - Open surgery

Other examples Lab/clinical results

- ◆ Lab test
 - Component
 - Property
 - Time aspect
 - System/Sample
 - Scale
 - Method

- Sodium measurement
 - Sodium
 - Serum concentration
 - Point in time
 - Serum/Plasma
 - Quantitative
 - N/A

LOINC "terms": SODIUM:SCNC:PT:SER/PLAS:QN

[LOINC, Regenstrief Institute]

Ontology vs. Information model

- Ontology
 - What: Meaning
 - How: hierarchies, frames, description logics
 - How big: often very large (hundreds of thousands of concepts)
 - Access: through browsers

- Information model
 - What: Structure
 - How: UML diagrams
 - How big: the model is often limited in size
 - Access: "readable" diagram
 - Populated with concepts from the ontology

Although O. and I.M. may be equivalent

Contact information

Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA olivier@nlm.nih.gov

Anita Burgun

Laboratoire d'Informatique Médicale Université Rennes 1 Rennes - France

Anita.Burgun@univ-rennes1.fr